Click here for course Quantum Information
Click here for course General Physics
Click here for Ms./BCh. Theses
Quantum Information
Room 11, Physics Dept., Sesto Fiorentino
Tuesday 11:3013:30, Thursday 9:3011:30
From February 26 to June 15, 2018 (Physics MSc.)
Programme
Axioms of Quantum Mechanics and elements of quantum computation: states and qubits, MajoranaBloch sphere, evolution and logical gates, states of composite systems and entanglement, Bell states. Quantum measurement process according to the minimal interpretation (projective measurement and POVM). The Bell inequality.
Tools for information theory:
Information content and entropy, Shannon theorem. Von Neumann entropy and entanglement of formation. Entanglement measures and estimators. Distance between quantum states. Fisher information and elements of quantum estimation theory.
Open quantum systems dynamics:
Decoherence and dissipation. Dynamical maps, quantum channels and Kraus operators. Markovianity and GoriniKossakowskiSudarshanLindblad equation. Quantum state and process tomography. Quantum Error correction. Physical implementations: from quantum biology to the controlled manipulation of atomic, molecular and photonic systems.
Axioms of Quantum Mechanics and elements of quantum computation: states and qubits, MajoranaBloch sphere, evolution and logical gates, states of composite systems and entanglement, Bell states. Quantum measurement process according to the minimal interpretation (projective measurement and POVM). The Bell inequality.
Tools for information theory:
Information content and entropy, Shannon theorem. Von Neumann entropy and entanglement of formation. Entanglement measures and estimators. Distance between quantum states. Fisher information and elements of quantum estimation theory.
Open quantum systems dynamics:
Decoherence and dissipation. Dynamical maps, quantum channels and Kraus operators. Markovianity and GoriniKossakowskiSudarshanLindblad equation. Quantum state and process tomography. Quantum Error correction. Physical implementations: from quantum biology to the controlled manipulation of atomic, molecular and photonic systems.
Suggested readings
 M.A. Nielsen and I.A. Chuang, "Quantum computation and quantum information", Cambridge University Press (2003).
T.M. Cover and J.A. Thomas, Elements of Information Theory, WileyInterscience (2006).
A.S. Holevo and V. Giovannetti, Quantum channels and their entropic characteristics, Rep. Prog. Phys. 75 046001 (2012).
F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014).
 M.W. Wilde, "Quantum Information Theory", Cambridge University Press (2013).
 H.P. Breuer and F. Petruccione, "The theory of open quantum systems", Oxford University Press (2002).
 I. Bengtsson and K. Zyczkowski, "Geometry of quantum states", Cambridge University Press (2006).
 P. Kaye, R. Laflamme, M. Mosca, "An introduction to Quantum Computing", Oxford University Press (2007).
 T. Heinosaari and M. Ziman, "The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement", Cambridge University Press (2011).
 M.A. Nielsen and I.A. Chuang, "Quantum computation and quantum information", Cambridge University Press (2003).
T.M. Cover and J.A. Thomas, Elements of Information Theory, WileyInterscience (2006).
A.S. Holevo and V. Giovannetti, Quantum channels and their entropic characteristics, Rep. Prog. Phys. 75 046001 (2012).
F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014).
 M.W. Wilde, "Quantum Information Theory", Cambridge University Press (2013).
 H.P. Breuer and F. Petruccione, "The theory of open quantum systems", Oxford University Press (2002).
 I. Bengtsson and K. Zyczkowski, "Geometry of quantum states", Cambridge University Press (2006).
 P. Kaye, R. Laflamme, M. Mosca, "An introduction to Quantum Computing", Oxford University Press (2007).
 T. Heinosaari and M. Ziman, "The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement", Cambridge University Press (2011).
Quantum Enjoying
IBM QExperienceExercises: on a quantum circuit, with a real IBM experiment, realise:
1) X, Y, Z singlequbit gate 2) twoqubit XX, YY, ZZ gate 3) twoqubit CNOT gate 4) twoqubit ControlledU gate 5) SWAP gate 6) Grover algorithm 7) Quantum Fourier Transform 
Quantum Moves


A pin code (obtained during the class) has to be entered upon opening Quantum Moves game (tap "competition").
Here you can see the realtime results of the local online competition among the quantum information class students: https://www.scienceathome.org/competitions/qclassflorence Download: for Windows, for Mac 
QUANTUM COMPOSER A flowbased IDE for QEngine (https://www.quatomic.com/composer/) The Composer is a quantum simulation and visualization tool for education and research, a visual scripting language for numerical experiments in quantum mechanics, breaking the barrier from dry classroom settings into the exciting world of quantum mechanics. You will be able to simulate many different kinds of physics and even integrate stateoftheart quantum optimal control algorithms based on our QEngine. Example files prepared for the students to start using it 
Quantum Information trailers






Quantum Class calendar
Course Evaluation
Physics  Classical Mechanics
Centro Didattico, viale Morgagni, Firenze
From September to December 2018 (Engineering BChl)
Classical Mechanics
Vectors; Kinematic: description of motion in three dimensions (position, velocity, acceleration) with various examples, kinematics of the rigid body, laws of change of reference system; Static: forces and their moments, equilibrium of particle and a rigid body, fundamental equations of statics of a rigid body, gravity, examples of ideal constraints, friction between solid bodies; Dynamics: principle of inertia, second law of motion, third principle of dynamics, mass and density, momentum and impulse, Kepler's law and Newton's law of universal gravitation, solving of various problems dynamics of a single material point, noninertial reference frames and inertial forces, conservation of momentum and angular momentum, collisions, fundamental equations of dymnamics of a rigid body, center of mass, moment of inertia, solving of various dynamics problems. Work, principle of virtual work, kinetic energy theorem, conservative forces, potential energy and stability, conservation of mechanical energy with various application examples.
Vectors; Kinematic: description of motion in three dimensions (position, velocity, acceleration) with various examples, kinematics of the rigid body, laws of change of reference system; Static: forces and their moments, equilibrium of particle and a rigid body, fundamental equations of statics of a rigid body, gravity, examples of ideal constraints, friction between solid bodies; Dynamics: principle of inertia, second law of motion, third principle of dynamics, mass and density, momentum and impulse, Kepler's law and Newton's law of universal gravitation, solving of various problems dynamics of a single material point, noninertial reference frames and inertial forces, conservation of momentum and angular momentum, collisions, fundamental equations of dymnamics of a rigid body, center of mass, moment of inertia, solving of various dynamics problems. Work, principle of virtual work, kinetic energy theorem, conservative forces, potential energy and stability, conservation of mechanical energy with various application examples.
Suggested readings
Theory
M. Bruzzi, F.S. Cataliotti, D. Fanelli, Elementi di Meccanica e Termodinamica, Soc. Ed. Esculapio, Bologna.
P. Mazzoldi, M. Nigro e C. Voci, Fisica I & II, (EdiSES)
R. A. Serway Principi di Fisica (Edises 1999)
Mencuccini e V. Silvestrini, Fisica I & II, (Zanichelli)
A. Bertin, M. Poli, A. Vitale, Fondamenti di MECCANICA, Progetto Leonardo, Soc. Ed. Esculapio, Bologna.
Advanced
R. P. Feynman, R. B. Leighton, M. Sands The Feynman Lectures on Physics (Addison Wesley 1977)
Problem and Exercises
Massimo Nigro, Cesare Voci , Problemi di fisica generale. Elettromagnetismo e ottica, Cortina, Padova (for Electromagnetism)
M. Bruzzi, F.S. Cataliotti, D. Fanelli, M. Siciliani de Cumis Esercizi di Meccanica e Termodinamica, Soc. Ed. Esculapio, Bologna.
M. Poli, Esercitazioni di FISICA 1, Ed. Pitagora, Bologna.
Longhi, Nisoli, Osellame, Stagira  Fisica Generale: Problemi meccanica termodinamica, Esculapio (for thermodynamics)
Morosi  PROBLEMI DI FISICA II PER L' UNIVERSITA'  Ed. Masson.
Theory
M. Bruzzi, F.S. Cataliotti, D. Fanelli, Elementi di Meccanica e Termodinamica, Soc. Ed. Esculapio, Bologna.
P. Mazzoldi, M. Nigro e C. Voci, Fisica I & II, (EdiSES)
R. A. Serway Principi di Fisica (Edises 1999)
Mencuccini e V. Silvestrini, Fisica I & II, (Zanichelli)
A. Bertin, M. Poli, A. Vitale, Fondamenti di MECCANICA, Progetto Leonardo, Soc. Ed. Esculapio, Bologna.
Advanced
R. P. Feynman, R. B. Leighton, M. Sands The Feynman Lectures on Physics (Addison Wesley 1977)
Problem and Exercises
Massimo Nigro, Cesare Voci , Problemi di fisica generale. Elettromagnetismo e ottica, Cortina, Padova (for Electromagnetism)
M. Bruzzi, F.S. Cataliotti, D. Fanelli, M. Siciliani de Cumis Esercizi di Meccanica e Termodinamica, Soc. Ed. Esculapio, Bologna.
M. Poli, Esercitazioni di FISICA 1, Ed. Pitagora, Bologna.
Longhi, Nisoli, Osellame, Stagira  Fisica Generale: Problemi meccanica termodinamica, Esculapio (for thermodynamics)
Morosi  PROBLEMI DI FISICA II PER L' UNIVERSITA'  Ed. Masson.
Course Evaluation
Projects for Ms./BCh. theses


